テラヘルツ光が姿を変えて水中を伝わる様子の観測に成功!− これまでの常識を覆すテラヘルツ光の新たな活用法として期待 −
2020/10/28

>> テラヘルツ光は、周波数1テラヘルツ(波長〜0.3 mm)領域の電磁波として医薬品や高分子材料の分析、また透過イメージングによる検査等に応用されています。

>>テラヘルツ光は、水の表面のごく薄い領域(10 μm程度)で吸収され、プラズマ生成等の破壊的な現象による周囲への影響を起こすことなく光音響波を発生し、その音響波によってテラヘルツ光自体の届かない6 mm以上の深さにまで指向性良くエネルギーが伝わることを明らかにしました。

>>本技術により生体細胞内に存在するアクチン繊維を、細胞死を招かず切断することに成功しています

>> テラヘルツ光(周波数0.1〜10テラヘルツ)は、光と電波の中間の波長領域(波長0.03〜3 mm)にある「電磁波」の一種です。赤外線や可視光を代表とする波長数μm以下の「光」や、マイクロ波やミリ波を代表とする波長数mm以上の「電波」は、古くから基礎研究や産業応用が広く行われてきました。一方「テラヘルツ光」は近年まで研究が進んでいませんでした。しかし今世紀に入り、テラヘルツ光の発生及び検出に利用される光・電子技術の進展に伴い、光と電波双方の利点を有すると共に双方の技術を利用できる新たな「電磁波」として注目されています。
>> テラヘルツ光は半導体や高分子材料への透過性が高い一方で、金属や水分に対して反射や吸収等の高い応答を示すため、非破壊非接触で物質内部をイメージングすることが可能となります。その性質を用いて医薬品や高分子材料の分析や検査等への応用が進められています。一方で水に非常に良く吸収される性質から、テラヘルツ光を水に照射した場合0.1 mm以上水中に浸透することができないため、水中物質への作用はできないと考えられていました。

>> 画像から見積もられる光音響波の速度は1506 m/sとなり、これは26℃の水中での音速と一致します。また、水中を6 mm以上光音響波で伝わることが観測されました。これは図1Bに示されるように、光音響波が点源ではなく直径0.5 mm程度の比較的広い領域から平面波として発生するため、水中を拡散せず伝わっている事に起因しています。また図1Bには水の表面や水中に変形が見られません。これは照射した液体に損傷を与えることなく非破壊的に光音響波が発生し、水中の物質まで非接触でエネルギーが伝達されている事を示唆しています。
>> 図2に光音響波発生の概念図を示します。テラヘルツ光は水に非常に強く吸収されるため、水面のごく薄い領域(厚さ0.1 mm以下)に全ての光エネルギーを集中させることができます。パルス光を用いているため、2ピコ秒という極めて短い時間で急激なエネルギー注入とそれに伴う圧力上昇が生じ、圧力波である光音響波が発生します。テラヘルツ光の水面照射による光−光音響波エネルギー変換は非常に高い効率で生じるため、比較的低い光エネルギー密度(10 mJ/cm2程度)でも光音響波が生じます。そのため、レーザー照射領域すなわち光音響波発生源を平面状に広くすることができます。広い発生源からは平面的な波面を持った光音響波が発生するため、図1Bに示すように水中深く光音響波が伝わっていくと考えられます。

>>液体、固体内を音速で伝播する圧力の波の一形態。光が媒質に吸収された際、光エネルギーの吸収に続いて熱が放出され、その熱による体積膨張により圧力派が生じる現象。本研究ではテラヘルツ光照射による微小体積への急激なエネルギー注入により急激な圧力変化が生じることで、光音響波が効率的に発生している。

>>テラヘルツ光照射による細胞内タンパク質重合体の断片化−THzパルス光が衝撃波として生体内部へ到達する可能性を発見−
>>空間の圧力勾配を可視化する手法。本研究では10ナノ秒という非常に短時間のスナップショット像を観測し、光音響波が伝播する様子の観測に成功した。